Search results

1 – 1 of 1
Article
Publication date: 14 June 2021

Haiwei Zhu, Hongfa Yu, Haiyan Ma, Bo Da and Qiquan Mei

The purpose of this paper is to compare the effect of rust inhibitors and surface strengthening materials on the service life of RC structures in tropical marine environments and…

Abstract

Purpose

The purpose of this paper is to compare the effect of rust inhibitors and surface strengthening materials on the service life of RC structures in tropical marine environments and ultimately to provide basis and recommendations for the durability design of reinforced concrete (RC) structures.

Design/methodology/approach

Slag concrete specimens mixed with four kinds of rust inhibitors and coated with four kinds of surface strengthening materials were corroded by seawater exposure for 365 days, and the key parameters of chloride ion diffusion were obtained by testing. Then a new service life prediction model, based on the modified model for chloride ion diffusion and reliability theory, was applied to analyze the effect of rust inhibitors and surface strengthening materials on the service life of RC structures in tropical marine environments.

Findings

Rust inhibitors and surface strengthening materials can effectively extend the service life of RC structures through different effects on chloride ion diffusion behavior. The effects of rust inhibitors and surface strengthening materials on the service life extension of RC structures adhered to the following trend: silane material > cement-based permeable crystalline waterproof material > hydrophobic plug compound > spray polyurea elastomer > water-based permeable crystalline waterproof material > calcium nitrite > preservative > amino-alcohol composite.

Originality/value

Using a new method for predicting the service life of RC structures, the attenuation law of the service life of RC structures under the action of rust inhibitors and surface strengthening materials in tropical marine environments is obtained.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 1 of 1